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Abstract 

A primary concern regarding the use of Key Driver Analysis (KDA) in market research 

is its lack of justification in statistical literature. The most popular technique, using multiple 

linear regression (MLR), is questionable for it violates theoretical assumptions in the nature of 

the data used. The present paper uses simulations to test MLR and Shapley regression, a method 

that that has been cited as the more robust although computationally-intensive, for finding key 

drivers. Situations considered involved the presence of multicollinearity and the omission of 

an important variable. Shapley performed better than MLR in most cases when the main drivers 

are easily discernible in importance but even then Shapley performances were not a long way 

above that of MLR, deeming the former’s complicated process impractical. In the cases where 

the importances were to some degree indiscernible, neither MLR nor Shapley were able to find 

the correct key drivers. 
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Introduction  
 

Motivation 

A primary function of market research consists of the improvement of products and 

services. However, before making any improvements, it is essential to know the importance of 

a product’s attributes. Perhaps the company would like to know which features of its services 

affect customer loyalty and satisfaction the most (e.g. affordability, employee courtesy). 

Answering this means uncovering key drivers of the customers’ brand attitude, or in another 

instance, their likelihood to recommend the products, etc. From here, among the list of the 

product’s attributes, the company would then know which to prioritize the next time it makes 

improvements on them. 

One popular method to identify such drivers is called the Importance-Performance 

Analysis or the Key Driver Analysis (KDA). Two popular techniques (among many others) to 

compute KDA estimates include: multiple linear regression (MLR) and Shapley regression. 

Between the two, MLR is more commonly used for its relative ease and wide availability of 

documentation, while Shapley, being the most recently developed method, is computing-

intensive but robust especially in the presence of multicollinearity (“Driver (Importance) 

Analysis”).  

Despite the methods being widely used in the industry, there is still no clear statistical 

basis on whether these methods are valid or not, which is a concern since measurements taken 

for the variables or questions are ratings and therefore not continuous. Also lacking in 

documentation is whether a specific method is better than the other. This simulation study is 

interested in which scenarios MLR works better than the Shapley regression, and whether 

MLR’s estimates are close enough to Shapley’s (being robust), making it more preferable than 

the computing-intensive Shapley regression. 

  

 

Significance of the Study 

Through KDA, companies can be more informed regarding, for example, their 

customers’ satisfaction, and consequently on which important factors they ought to focus their 

resources. Moreover, it can also be used for making policies that will improve or maximize the 

performance of a product or a service, or for new customer acquisition strategies. However, 

performing KDA is not always achievable, especially for companies with limited resources. 

This is particularly the reason why Shapley technique is almost always avoided despite being 

considered as the “state of the art”. 

In particular, MLR and Shapley regression have their own strengths and weaknesses. 

For instance, the linear regression technique is relatively easy to execute, however, it may cause 

unusual results when there is strong correlation among the predictor attributes. On the other 

hand, the Shapley regression, although it is a computing-intensive method, provides an 

estimator for measuring the importance of attributes which is robust to multicollinearity. 

Through this study, it might then be possible to show that using linear regression may still be 

preferred than the Shapley under certain scenarios. It may also be possible that results of linear 

regression be observed as being nearly close to or even better than that of Shapley. 

With the study’s results, it aims to clarify whether MLR is better than Shapley or vice 

versa, in terms of accuracy and most especially of practicality. Hence, users of such techniques 

will have an idea of what to expect and will be more confident of the results. 
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Problem and Objectives 

In this study, the researchers intend to find out how well the linear regression can 

determine or predict the key driver(s). Due to its being computationally intensive, the Shapley 

regression is not as widely used as MLR, however it is often described as being “state of the 

art.” The researchers wish to put this claim to test by observing and comparing the 

performances of the MLR and Shapley under certain scenarios (e.g. multicollinear regressors). 

For each of these scenarios, this study aims to determine the method that best and most 

efficiently provides the key driver(s) of the business outcome of interest (“Driver (Importance) 

Analysis”).  

 

 

Scope and Limitations 

 The simulation study will consider only four distinct scenarios based on combinations 

of the presence/absence of two modelling issues: omitted questions and multicollinearity. For 

scenarios with multicollinearity, only a high level will be considered. Varying levels of 

multicollinearity will not be explored. Also, in order to remain economical on computing time 

and resources, only 400 simulations will be done, each using a simulated data set with a 

hundred observations. 

 With regards to the simulation itself, certain limitations were imposed by the algorithm 

used. For one, the Mean Mapping Method algorithm used in the present paper requires a pre-

specified marginal probability mass function for the k levels or outcomes of the p random 

variables. It would be reasonable to suppose that the need for a predetermined PMF has in some 

way crippled the flexibility of the simulation study. Nevertheless, considering the tedious 

nature of other simulation techniques that do not make use of any distributional assumption 

(such as presented in Biswas, 2004), the researchers decided to retain this limitation, simply 

resolving to use various distributions among the variables simulated in order to closely 

approach real world data. 

 One more limitation the prespecified PMFs imposed on the study was lowering the 

number of responses of the likert response variables from the best 7 (based on simulation 

studies by Jamal, 2014) to 5, to make manually distributing the PMFs easier upon calibration.  

The Mean Mapping Method also requires the use of a positive semidefinite correlation matrix. 

This imposed another limitation on the study. The researchers had to find a symmetric 

combination of hypothetical pairwise correlations that would together yield eigenvalues greater 

than or equal to zero. But in Wicklin (2013), not all positive semidefinite matrices would lead 

to a convergence in the objective equation presented in Kaiser et al (2011) in producing the 

multivariate normal simulation from which the ordinal values will be generated. The 

correlation matrix used in the study was the first that the researchers were able to generate that 

lead to a convergence, and thus no other correlation matrices aside from the identity matrix (for 

the case of no collinearity) were explored due to the difficulty of generating just one. 

  

 

Review of Related Literature 
This paper focuses on the issue of wide usage of linear regression methods in finding 

key drivers in survey data, even when the responses happen to be ordinal in nature (e.g. in a 

Likert scale). Osborne and Waters (2002) cite normality as an important assumption for the 

variables to be included in linear regression analysis. Failure to satisfy this assumption have 

been found to distort relationships and significance tests. Normally distributed data are 

continuous in nature and thus a problem is expected to arise when linear regression is 

performed on discrete variables. On a strictly theoretical perspective, using linear regression 

for survey data whose responses are typically in Likert scales, should not be permissible. 
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However, Winship and Mare (1984) cite multiple studies that argue using ordinal 

variables as if they were continuous may be permissible for under flexible and robust methods 

that the biases entailed may be safely ignored. The same paper cites as well arguments to the 

contrary, while themselves showing that the linear regression tends to give distorted results. 

Thus this paper will explore the use of linear regression in the context of performing KDA, the 

extent at and scenarios in which it can identify key drivers among regressor variables 

influencing regressor variables, all of which are assumed to be coming from a Likert scale. 

An important aspect to explore in later formulating the methodology of this paper is 

finding a proper calibration for a Likert scale survey. Likert (1932, cited in Allen et al, 2007) 

himself suggests the use of wide scales. Commonly used scales in most research papers are 

five and seven choices in length. Opinions vary whether even-numbered scales are better in 

order to prevent neutral responses, or odd-numbered scales are optimal for the very fact that 

they allow for undecided answers. However, Jamal (2014) has shown that seven-point scales 

are most optimal, in the sense that they result in lower measurement error and higher precision 

compared to a five-level scale. 

A common pitfall in the use of linear regression in KDA is when the predictor variables 

exhibit some level of multicollinearity. It is only intuitive to expect that certain aspects of a 

service or establishment may actually be influencing one another. Linear regression assigns 

effects to multicollinear variables unevenly, not to mention that in the presence of perfect 

multicollinearity the design matrix XTX  is singular, making the estimated regression model 

done under ordinary least squares indeterminate. Even if the design matrix is invertible, any 

computed inverse will be ill-conditioned, and the resulting beta coefficients unstable.  

Demonstrations have shown (Hansa Marketing Services, 2014) that a problem with 

multicollinearity may be assessed through improved regression methods for KDA that take into 

account proper decomposition of R2 in models of all-possible-combination of the explanatory 

variables (e.g. Shapley regression). Moreover, the same demonstration has shown that ordinary 

regression analysis has a tendency to underestimate the importance of key drivers.  

 

 

Methodology 

 

Data Simulation 

A hypothetical survey will be simulated, consisting of five questions, four of which will 

be used to explain (regressors) the responses to the fifth question (response variable).  An 

example of such a survey in real-world settings might be asking for a customer’s rating on four 

main aspects of a service, and afterwards asking how likely they are to avail the service another 

time. The study assumes all questions on the questionnaire will have responses ordinal in 

nature, particularly following a uniform Likert scale of five responses. The choice of this scale 

despite results showing the seven-point scale as more optimal is due to the requirement of a 

predefined probability mass function for each response in each variable for executing the data 

simulation algorithm. A shorter scale will be easier to distribute, but too short a scale might fail 

to mirror real life surveys. 

The performance of ordinary regression analysis in finding the importance of key 

drivers in the simulated survey will be observed under various scenarios, such as in the presence 

of multicollinear regressor variables. Shapley regression will be done simultaneously for 

comparison. 

To thoroughly examine the performance of the two methods, the researchers considered 

three overall cases, wherein 1) the key driver is evident among the questions, 2) many questions 

are strong drivers, but key driver is still fairly evident, and 3) all questions are strong drivers, 
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but the most influential is still considered as the key driver. For each of the two cases, the 

following scenarios will be simulated: 

 

Table 1: Cases considered in the simulation study 

Nature of Data 
Nature of Key 

Drivers 
Multicollinear 

1 Question 

Omitted1 

Likert-Type, 5-point 

scale 

Strongly Evident 

Yes Yes 

Yes No 

No Yes 

No No 

Fairly Evident 

Yes Yes 

Yes No 

No Yes 

No No 

Indiscernible 

Yes Yes 

Yes No 

No Yes 

No No 
1 Omitted question is relevant, but it is NOT the key driver itself. 

 

In each scenario, 400 datasets will be simulated, each with a set of 100 responses. For 

the case of no omitted questions, four regressor variables will be simulated, with one response 

variable, all of which will be incorporated into the model. For the case of omitted questions, 

one of the four regressor variables will be omitted, with only the remaining three incorporated 

into the model. This is in order to generate the case of a variable with a significant contribution 

in explaining the variation in the response variable, but which has not been identified and 

included by the researchers. 

 

 

Generating Multicollinear Ordinal Regressor Variables 

Generating hypothetical surveys for this study requires simulating ordinal p > 2 

variables X1, X2,...,Xp  each representing responses to questions coded on a Likert scale of 

values 1 to 5. For the case of no omitted questions, p = 4 response variables will be simulated. 

On the other hand, for the case of omitted questions, p = 3 response variables will be used, with 

the third as the “omitted” question.  The p simulated variates must also follow a specified 

correlation structure, for the case of generating multicollinear variates. 

Algorithms in simulating correlated K-level ordinal variables are abundant in literature. 

In Demirtas (2006), a possible method for doing this requires first dividing each ordinal 

variable into a binary variate XBIN with values 0 or 1. Such that an ordinal variable X with 

levels 1,2,..K is recoded into XBIN variable whose value is 0 when X = 1,2,..., K/2 and 1 when 

X = (K/2)+1,...,K. Binary data are simulated and then recoded into their K-level ordinal 

counterparts using proportions. Biswas (2004) lists down multiple possible alternative 

algorithms for use in this scenario. However, the algorithms presented would be arduous to 

code in SAS, and would work better in a more object-oriented environment such as R. Kaiser, 

Träger and Leisch (2011) provide an algorithm called the mean-mapping method that has been 

shown to outperform the algorithm in terms of being flexible to more initial correlation 

structures. The mean mapping method is used in this paper, using code adapted from Wicklin 

(2013). 

The mean mapping method begins with grouping the p desired ordinal variables into 

pairs (Xi, Xj) and finding the root to a complicated equation that eventually yields the 
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cumulative distribution function of the bivariate normal distribution for their continuous 

counterparts (Yi, Yj). From this we solve the pairwise correlation for the two continuous 

variables. If we let C as the matrix of pairwise correlations cij, the p continuous variables are 

simulated from the multivariate normal distribution as (Y1,Y2,..,YK)~MVN(0, C). 

The method requires prespecification of a probability mass function (PMF) for each 

value of the p ordinal variates. An advantage of this is that the p responses may be simulated 

in a way that the distribution of their responses will not all be alike (as might be expected in 

real data). Wicklin (2013) provides a helpful illustration for coding the simulation on SAS. 

Given the PMF of an ordinal variable pX(X=x), the algorithm will find the cumulative 

distribution F(X) and find standard normal quantiles such that for a value c of X: Φ(c) = F(X 

< c) where Φ is the cumulative standard normal distribution. It is clear that each of the (K-1) 

values of X will have a corresponding standard normal quantile (the Kth will have a cumulative 

probability of 1 and therefore no corresponding quantile in the standard normal distribution). 

The standard normal distribution will then be divided into K regions I1, I2,...,IK  delimited by 

these quantiles. 

 

 
Figure 1: An illustration for dividing N(0,1) into quantiles 

 

The simulated continuous variables will be converted into their ordinal counterparts by 

comparing each value and finding the region in which they fall based on the standard normal 

quantiles. The resulting ordinal variables will have a correlation structure approaching the 

desired values. How far the resulting ordinal correlation structures are from their original 

values after the mean mapping algorithm will be explored in the discussion of results. 

As a restriction, the study will not explore varying levels of multicollinearity. For the 

general case wherein multicollinearity is present, a high level of collinearity will be 

immediately considered. However, for the special case in which an omitted key driver is highly 

collinear with a present weak driver, in order to highlight this association all other correlations 

will be diminished to moderate levels. Similarly, for collinear key and weak drivers that are 

both present (another special case), all other correlations will be reduced to moderate levels. 

In assessing the ability of ordinary least squares regression in finding the key driver, 

we formulate a hypothetical regression model for the fifth question Y. However, Y must also 

be in the form of a Likert scale response on five levels. To do this, we form a hypothetical 

regression model in which the coefficients sum to 1, without inter cept, and add a random 

standard normal variable as random error. The hypothetical models 

 
Yi = FLOOR(0.05 X1i + 0.15 X2i + 0.20 X3i + 0.60 X4i + εi)   Case 1: Main Drivers Strongly Evident 

Yi = FLOOR(0.10 X1i + 0.25 X2i + 0.30 X3i + 0.35 X4i + εi)   Case 2: Main Drivers Fairly Evident 

Yi = FLOOR(0.20 X1i + 0.23 X2i + 0.27 X3i + 0.30 X4i + εi)   Case 3: Main Drivers Indiscernible 
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where FLOOR(.) is the greatest integer function and εi~N(0,1). 

The function inside the FLOOR(.) function will generally have values around 1 to 5, 

except for cases wherein the contribution of the error term is large. To keep the values around 

the 5-point Likert scale, a limit will be imposed such that 

 

Y = 5 if FLOOR[f(X)] > 5 

Y = 1 if FLOOR[f(X)] < 1 

 

The result of the processes above will be a data set of five variables, each coded on the 

five-point Likert scale. 

 

 

Key Driver Analysis Using MLR 

 

For each data set, MLR will be performed using the generated independent variables. 

In Sambandam (2001), one output of interest from MLR is the relative importance of the 

independent variables expressed in the form of coefficients or beta weights. Beta weights are 

used to identify the variables that have the most impact on the dependent variable. The 

importance of the ith variable or question which is the proportion of the absolute values of the 

estimated coefficients will be computed, i.e., Pi = |βi| / ∑ |βi|i . Then, the largest of these 

calculated proportions will determine the key driver for that particular data set.  After this 

process is done for the 400 datasets, the variable which has the most number of maximum 

importance (i.e. most frequent key driver) will be the key driver that MLR considers under that 

specific scenario. The variable with the second most number of maximum importance will be 

the second driver. The frequency of each question being identified as the key driver and the 

second driver will be taken. The estimated coefficients from each of the regression runs for the 

400 datasets will also be outputted to be analyzed later. 

 
Figure 2: A flowchart of the steps to be followed in KDA through MLR 

 

 

Key Driver Analysis Using Shapley Regression 

Shapley regression, unlike the regular MLR approach, considers the average marginal 

R2  for each regressor, in which the regressor having the largest marginal R2  is considered as 

the key driver. Though tedious, this method addresses the consequences of multicollinearity 

among the regressors. For this case, there are four independent variables whose individual 

contributions, called Shapley values, the researchers will be computing for. 
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 First, all combinations of regressors (individual, pairwise, and so on) will be run against 

the dependent variable. R2 values are then extracted from each regression. This is done for the 

400 datasets for all the 4 scenarios.  

For four regressors, the table below shows all the possible combinations for regression, 

amounting to 15 regression equations for each dataset. Consequently, there are 15 R2 to be 

compiled (horizontally) for each dataset. 

Once all R2 are compiled, the Shapley values for the independent variables A, B, C, D 

are computed as follows: 

 
𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑉𝑎𝑙𝑢𝑒 (𝐴) = 

{(𝑅𝐴𝐵𝐶𝐷
2 − 𝑅𝐵𝐶𝐷

2 ) + [
(𝑅𝐴𝐵𝐶

2 − 𝑅𝐵𝐶
2 )  +  (𝑅𝐴𝐵𝐷

2 − 𝑅𝐵𝐷
2 )  +  (𝑅𝐴𝐶𝐷

2 − 𝑅𝐶𝐷
2 )

3
] + [

(𝑅𝐴𝐵
2 − 𝑅𝐵

2)  +  (𝑅𝐴𝐶
2 − 𝑅𝐶

2)  +  (𝑅𝐴𝐷
2 − 𝑅𝐷

2 )
3

] + 𝑅𝐴
2}

4
 

 

𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑉𝑎𝑙𝑢𝑒 (𝐵) = 

{(𝑅𝐴𝐵𝐶𝐷
2 − 𝑅𝐴𝐶𝐷

2 ) + [
(𝑅𝐴𝐵𝐶

2 − 𝑅𝐴𝐶
2 )  +  (𝑅𝐴𝐵𝐷

2 − 𝑅𝐴𝐷
2 )  + (𝑅𝐵𝐶𝐷

2 − 𝑅𝐶𝐷
2 )

3
] + [

(𝑅𝐴𝐵
2 − 𝑅𝐴

2)  + (𝑅𝐵𝐶
2 − 𝑅𝐵

2)  +  (𝑅𝐵𝐷
2 − 𝑅𝐷

2 )
3

] + 𝑅𝐵
2}

4
 

 

𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑉𝑎𝑙𝑢𝑒 (𝐶) = 

{(𝑅𝐴𝐵𝐶𝐷
2 − 𝑅𝐴𝐵𝐷

2 ) + [
(𝑅𝐴𝐵𝐶

2 − 𝑅𝐴𝐵
2 )  + (𝑅𝐴𝐶𝐷

2 − 𝑅𝐴𝐷
2 )  + (𝑅𝐵𝐶𝐷

2 − 𝑅𝐵𝐷
2 )

3
] + [

(𝑅𝐴𝐶
2 − 𝑅𝐴

2)  + (𝑅𝐵𝐶
2 − 𝑅𝐵

2)  + (𝑅𝐶𝐷
2 − 𝑅𝐷

2 )
3

] + 𝑅𝐶
2}

4
 

 

𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑉𝑎𝑙𝑢𝑒 (𝐷) = 

{(𝑅𝐴𝐵𝐶𝐷
2 − 𝑅𝐴𝐵𝐶

2 ) + [
(𝑅𝐴𝐵𝐷

2 − 𝑅𝐴𝐵
2 )  + (𝑅𝐴𝐶𝐷

2 − 𝑅𝐴𝐶
2 )  + (𝑅𝐵𝐶𝐷

2 − 𝑅𝐵𝐶
2 )

3
] + [

(𝑅𝐴𝐷
2 − 𝑅𝐴

2)  + (𝑅𝐵𝐷
2 − 𝑅𝐵

2)  + (𝑅𝐶𝐷
2 − 𝑅𝐶

2)
3

] + 𝑅𝐷
2 }

4
 

 

 

Where R2
A is the corresponding fit value when the model contains only the regressor 

A, R2
B when the model contains only B, and so on. 

The first and middle terms for each equation accounts for the contribution of variable 

X when other variables are added in the model. All these marginal effects are then averaged 

for each for each variable, and that constitutes the corresponding Shapley values. The variable 

having the maximum Shapley value is considered as the key driver for that specific dataset 

under a certain scenario. 

Within one scenario, the process is done 400 times (as there are 400 datasets for each 

scenario). The variable that has the maximum count (i.e. most frequent key driver for the 400 

datasets) is the one Shapley regression considers as the key driver for this scenario, while the 

one with the second highest count is the second driver. The frequency of each question being 

identified as the key driver and second driver will also be taken. 
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Figure 3: A flowchart of the steps to be taken in KDA using Shapley 

 

 

Comparison of the Results of the Two Methods and Other Analyses 

 The two methods will be done simultaneously for each of the data sets simulated 

(scenarios), according to the following general algorithm: 

 

 
Figure 4: Overall algorithm to be used in simulations 

 

Now that the summary of identified questions as key and second drivers for each of the 

methods were outputted, the researchers will compare them. For each scenario, the researchers 

will determine which method is more appropriate by choosing the one that got the correct key 

and second drivers the most times. In the case that the results of the two methods are almost 

equal, the MLR method will be chosen due to the simplicity of its application. In addition, the 

researchers will inspect the behavior of the estimated coefficients of the MLRs and compare 

them to their supposed weights (assigned in the simulation) to see how closely they were able 

to be estimated. 
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Results and Discussions 

 In simulating multicollinearity among the p questions, the following marginal PMFs 

were used in the simulation: 

Table 2: Marginal PMFs defined in simulating Likert variables 

X 1 2 3 4 5 

P{X1=X} 0.20 0.20 0.20 0.20 0.20 

P{X2=X} 0.10 0.20 0.40 0.20 0.10 

P{X3=X} 0.35 0.35 0.10 0.10 0.10 

P{X4=X} 0.20 0.30 0.30 0.10 0.10 

 

 The rationale behind the above set marginal PMFs is that several scenarios of 

distributions of answers are simulated per question. X1 represents a question regarding an 

attribute to which the respondents are indifferent, thus the probabilities of each of the possible 

responses are equal. On the other hand, X2 represents a question to which the respondents tend 

to be neutral, thus the probabilities are symmetrically distributed around the middle value 3. 

X3 represents a question to which the respondents are generally negative to, thus the 

probabilities are distributed skewed to the right. X4 represents a question to which the 

respondents are negative to neutral to, thus although still being skewed to the right is 

considerably distributed closer towards the center than X3. 

Likewise, the following target correlation matrix was calibrated in simulating the four 

ordinal variables using the Mean Mapping Method by Kaiser et. al. 

 

Table 3: Table of target correlations between the four simulated variables 

 X1 X2 X3 X4 

X1 1 0.80 0.80 0.75 

X2  1 0.90 0.80 

X3   1 0.80 

X4    1 

 

For all cases, p = 4 ordinal variables will be simulated, simply omitting one of them from the 

regression model during MLR estimation to simulate the scenario that a significant variable 

influencing the dependent Y has not been included by the researchers performing the survey. 

The above correlation matrix will be used in the scenarios where multicollinearity is present. 

For the case where no multicollinearity is present, an identity matrix will be used as the target 

correlation matrix. 

 As a prerequisite step in the study, the Mean Mapping Algorithm method was tested 

for each of the 400 datasets simulated to check how far the resulting correlations were from the 

target. For the correlation between X1 and X2, a mean absolute error of 0.0258. Throughout 

the 400 simulated data sets, the resulting correlation was only 0.03 units above or below the 

target, suggesting a good amount of intended correlation retained in simulation. 

 For all scenarios under case 1, the questions have the following weights, question 1: 

0.05, question 2: 0.15, question 3: 0.20, and question 4: 0.60. Question 4 is the clear key driver 

while question 3 is the second. On the other hand, for scenarios under case 2, the weights are 

the following, question 1: 0.10, question 2: 0.25, question 3: 0.30, and question 4: 0.35. Lastly, 

for all scenarios under case 3, question 1: 0.20, question 2: 0.23, question 3: 0.27, question 4: 

0.30. In here, questions have almost equal influence on the Y, making the key driver question 

4 and second driver question 3 difficult to detect. 



12 

In the scenarios with an omitted question, question 3 will be omitted, hence the second 

driver will be question 2. The table of percentages of questions identified as the two main 

drivers will be presented. To analyze the behavior of the two methods’ key driver determinants 

throughout the 400 datasets, the scatterplot of each of them against that regression’s R2 are 

presented for each scenario. 

 

 

Case 1: Main Drivers1 are Strongly Evident 

 

Scenario: Multicollinear, no omitted variables 

The following discussion summarizes the result of MLR and Shapley in finding the key 

driver for each of the 400 simulated datasets under the scenario that the four regressors are 

multicollinear and no significant question was omitted. Each batch of driver importances 

estimated for one simulated dataset is considered 1 instance. The percentage of instances in 

which a question was counted as the key driver (highest importance) or second driver (second-

highest importance) are presented in Table 4. 

Shapley regression correctly classified question 4 as the key driver 3.5 percentage 

points of the time more than MLR was able to, and question 3 as the second driver 4.5 

percentage points of the time more. For this scenario, Shapley regression more accurately 

determined the key driver than MLR although only by fractional difference. 

 

Table 4: Percentage of instances a question was identified as a main driver 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.75% 1.25% 6.25% 5.25% 

2 0.75% 0.50% 14.25% 16.25% 

3 23.25% 19.50% 57.25% 61.75% 

4 75.25% 78.75% 22.25% 16.75% 

 

Meanwhile, figures 5 and 6 present a scatterplot of the driver importance values computed for 

the key drivers using MLR and Shapley against the R2 fits of their corresponding models. 

Figure 5: Identified key driver’s importance (MLR) 

vs Fit Performance 

Figure 6: Identified key driver’s Shapley value vs 

Fit Performance 

 

                                                           
1 Henceforth used to refer collectively to the key and second drivers. 
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The way the points are exploded erratically suggest an instability in the MLR 

importance estimates. Regardless of how good the regression model fits the simulated data, the 

importance values do not seem to exhibit any stability. It is evident in the scatterplot that even 

when the R2 fit is good, the key driver’s importance value can be very low or very high, without 

a distinguishable pattern. 

On the other hand, Figure 6 shows an increasing trend in the Shapley value when the 

R2 fit is improving, although this result is slightly expected considering that the Shapley value 

is a function of the all-possible-regression R2 values. But because of the presence of 

multicollinearity, even the Shapley values display some level of erraticness, which must be due 

to high multicollinearity levels blowing up the R2 values for the permutation models used in 

Shapley. 

 

 

Scenario: Multicollinear, Question 3 omitted 

 

Table 5: Percentage of instances a question was identified as a main driver 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.75% 1.75% 29.25% 19.00% 

2 7.75% 6.00% 63.00% 74.00% 

3 - - - - 

4 91.50% 92.25% 7.75% 7.00% 

 

Shapley regression identified the correct key driver by a mere 0.75 percentage points 

more than the MLR and the correct second driver by a much larger 11 percentage points. 

Shapley remains the better method in identifying drivers, although for the case of the key 

driver, the small advantage of Shapley over MLR might seem too small considering the 

tediousness of the computation process involved. 

 

 

Figure 7: Identified key driver’s importance (MLR) 

vs Fit Performance 

Figure 8: Identified key driver’s Shapley value vs Fit 

Performance 
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The same patterns as when the regressors were complete are observed with both 

methods when the second driver is omitted from the model. MLR estimates are erratic and 

wildly scattered even when the R2 fit of the model to the data is at its highest. Meanwhile, 

Shapley retains the increasing linear trend, with slightly higher values that are now more close 

together. 

 

 

Scenario: Non-collinear, no omitted questions 

 

Both methods were able to identify the correct key driver 100 percent of the time, 

however, MLR will be chosen due to its relative ease of computation. Shapley regression, on 

the other hand, identified the correct second driver more than the MLR by 6.75 percentage 

points. Again, the advantage is very low compared to how tedious the process involved is for 

Shapley regression. The behavior of the estimates, however, shows the same pattern as in the 

multicollinear case, although here there is a slight increasing trend distinguishable from the 

scatter plot for MLR. The estimates remain to be to some degree erratic. 

 

Table 6: Percentage of instances a question was identified as a main driver 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.00% 0.00% 4.75% 8.00% 

2 0.00% 0.00% 32.50% 22.50% 

3 0.00% 0.00% 62.75% 69.50% 

4 100.00% 100.00% 0.00% 0.00% 

 

 

Figure 9: Identified key driver’s importance (MLR) 

vs Fit Performance 

 

Figure 10: Identified key driver’s Shapley value vs 

Fit Performance 

 

Now that the questions are non-collinear, the range of the R2’s is lower but the importance still 

erratic. The Shapley values on the other hand, are now a lot more precise and have an even 

clearer increasing linear trend. 
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Scenario: Non-collinear, Question 3 omitted 

 

Table 7: Percentage of instances a question was identified as a main driver 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.00% 0.00% 25.75% 32.75% 

2 0.00% 0.00% 74.25% 67.25% 

3 - - - - 

4 100.00% 100.00% 0.00% 0.00% 

 

Both methods were able to identify the correct key driver. Again, MLR is chosen over Shapley 

regression. Moreover, MLR works better than Shapley as it correctly identified the second 

driver 7 percentage points higher than Shapley. While Shapley proved to be more powerful 

than MLR in the multicollinear scenarios, MLR seems to be more preferable for the case of 

non-collinear explanatory variables. 

The Importance vs R2 behavior remains similar to all the other cases, however the 

Shapley values obtained almost perfectly increase with the R2. See Figures 11 and 12 below: 

 

Figure 9: Identified key driver’s importance (MLR) 

vs Fit Performance 

Figure 10: Identified key driver’s Shapley value vs 

Fit Performance 

 

 

 

Case 2: Main Drivers Fairly Evident 

With a hypothetical model using regression weights in which the main drivers are 

somewhat indiscernible, both techniques failed in identifying the key and second drivers when 

multicollinearity is present and no question was omitted. However, it can be seen that both 

techniques might have also switched the ranks of question 3 and question 4, which is clearly 

evident for the case of MLR. Compare the results under high multicollinearity (Table 8) and 

under perfect non-collinearity (Table 9). Highlighted in cyan are percentages that are highest 

for each technique, indicating the question number it identified as the key driver/second driver. 

Highlighted in yellow are percentages that are higher between the two techniques, indicating 

the technique that performed better. Note that when there is perfect independence between the 

four variables, the correct main drivers were again identified by both MLR and Shapley. 
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Table 8: Percentage of instances a question was identified as a main driver under case 2, 

collinear with no omitted questions 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 2.00% 3.50% 11.00% 6.50% 

2 8.00% 5.75% 14.00% 33.75% 

3 62.50% 63.25% 23.00% 26.25% 

4 27.50% 27.50% 52.00% 33.50% 

 

Table 9: Percentage of instances a question was identified as a main driver under case 2, 

non-collinear with no omitted questions 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.00% 1.00% 4.25% 6.00% 

2 10.50% 6.25% 25.25% 19.75% 

3 35.00% 43.00% 39.50% 39.50% 

4 54.50% 49.75% 31.00% 34.75% 

 

Both techniques are now being confused that they have been identifying question 3 as the key 

driver when it should have been question 4 (and vice versa) when the variables are 

multcollinear. Comparing the two techniques performance in identifying the correct main 

drivers, both equally performed in determining the key driver at 27.50%, while Shapley 

identified the second driver 3.25 percentage points higher than the MLR. This confusion is not 

observed under non-collinearity, although MLR performed better than Shapley with 4.75 

percentage points higher in determining the key driver and just the same as in determining the 

second driver. This might indicate that MLR indeed performs better than Shapley regression 

under a “no-problem” scenario (i.e. no multicollinearity and no omitted questions). 

 The same results are observed when question 3 has been omitted. With 

multicollinearity, Shapley regression identified the correct key driver by a mere 0.75 

percentage points more than the MLR and the correct second driver by a much larger 11 

percentage points (see table A1 in Appendix A). Meanwhile, under non-collinearity, both 

methods were able to identify the correct key driver although MLR works better than Shapley 

as it correctly identified the second driver 7 percentage points higher than Shapley. While 

Shapley proved to be more powerful than MLR in the multicollinear scenarios, MLR seems to 

be more preferable for the case of non-collinear explanatory variables (see table A2 in 

Appendix A). 

The patterns in the importance vs fit plots are similar to those seen in the first case: the 

importance estimates using the MLR erratic, while Shapley values exhibit an increasing linear 

trend. This still shows that the better the fit or the higher the R2 means the greater chance 

Shapley results will be reliable. However, in this case, the techniques experience problems in 

correctly identifying the main drivers; specifically, it switches the ranks of the key driver and 

second driver. See figures A1 to A4 in Appendix A for the scatterplots. 
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Case 3: Main Drivers Indiscernible 

 Main drivers were misidentified for all scenarios, indicating that both techniques failed. 

Highlighted in cyan are percentages that are highest for each technique, indicating the question 

number that it identified as the key driver/second driver. 

 Without omitting any questions, under multicollinearity both MLR and Shapley 

regression were incapable of correctly identifying the key and second driver. Both technique 

identified question 3 as the key driver. On the other hand, MLR identified question 4 as the key 

driver, while Shapley identified question 2. With this, it can be seen in MLR that the 

identification of the two main drivers were switched (i.e. question 3 was identified as the key 

driver when it’s supposed to be question 4, while question 4 was identified as the second driver 

when it’s supposed to be question 3). Shapley, on the other hand, failed at determining the key 

and second driver. Ignoring that both have failed, MLR identified the key driver 2.75 

percentage points higher than Shapley but Shapley identified the second driver 5.5 percentage 

points higher than MLR. In MLR, it can be seen that the identification of the two main drivers 

were switched. However, when the regressors are non-collinear both methods correctly 

identified the drivers. MLR was able to correctly identify the key and second drivers than 

Shapley by 4 percentage points and 3.75 percentage points, respectively. Shapley failed at 

identifying the second driver that may be possibly because of switching again both the third 

and fourth questions as the key drivers; MLR was able to find the correct second driver. These 

results are summarized in tables 10 and 11 respectively. 

 

Table 10: Percentage of instances a question was identified as a main driver under case 2, 

collinear with no omitted questions 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 7.00% 11.75% 27.50% 19.25% 

2 8.00% 5.25% 11.25% 31.75% 

3 62.00% 62.75% 18.25% 23.75% 

4 23.00% 20.25% 43.00% 25.25% 

 

Table 11: Percentage of instances a question was identified as a main driver under case 2, 

non-collinear with no omitted questions 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 9.50% 15.50% 13.25% 21.50% 

2 13.75% 8.00% 20.75% 16.25% 

3 34.50% 38.25% 33.50% 29.75% 

4 42.25% 38.25% 32.50% 32.50% 

 

The same results are obtained when question 3 has been omitted from the model. Under 

collinearity, both techniques identified question 2 as the key driver when it is only the second 

driver. With question 3 omitted, the second driver is now question 2, but none of the techniques 

were able to determine the second driver correctly. It can be seen, however, that Shapley had 

switched the identification of the key and second driver. Disregarding that both have failed, 

MLR actually got the correct key driver 3.25 percentage points higher than Shapley but Shapley 

got the second driver 7.25 percentage points higher than MLR. And under non-collinearity, 

MLR got the key and second drivers higher than Shapley by 4.25 percentage points and 9.50 
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percentage points, respectively. With no signs of switching the identification of key and second 

drivers, it is clear that Shapley has failed, falling behind MLR by at least 5 percentage points. 

These results are summarized in tables A3 and A4 

The same driver importance vs fit patterns are observed in all four scenarios under case 

3 as in the previous cases. The scatterplots can be found in figures A5 to A8. 

 

 

On the behavior of MLR Estimates 

 

From Case 1: Yi = 0.05 X1i + 0.15 X2i + 0.20 X3i + 0.60 X4i + εi 

 

Table 12: MLR Estimates behavior under multicollinearity and without omitted questions 

Variable Mean Std. Dev 

Lower 95% 

CL (Mean) 

Upper 95% CL 

(Mean) 

X1 0.0282638 0.1118664 0.0172678 0.0392599 

X2 -0.0124018 0.1798682 -0.0300822 0.0052786 

X3 0.2969792 0.1663545 0.2806272 0.3133312 

X4 0.4758095 0.1358109 0.4624598 0.4891592 

 

 

Table 13: MLR Estimates behavior under non-collinearity and without omitted questions 

Variable Mean Std. Dev 

Lower 95% 

CL (Mean) 

Upper 95% CL 

(Mean) 

X1 0.0472533 0.0626306 0.0410970 0.0534097 

X2 0.1164651 0.0831275 0.1082939 0.1246362 

X3 0.1655813 0.0718766 0.1585161 0.1726465 

X4 0.5088389 0.0761798 0.5013507 0.5163270 

 

The values are observed to be closer to the actual regression weights used in the simulation in 

the case of no collinearity between regressors. The standard deviations are also smaller, 

indicating greater stability in the estimates, whereas those in the multicollinear case have very 

high variability. 

These results can be viewed in reference to the Fit vs Importance scatterplots discussed 

earlier in the paper, where the estimates were blown up erratically in the multicollinear case, 

and more stable in the noncollinear case - the trend becoming more apparent although the 

variability remained considerably wild. This also explains how MLR was able to approach and 

even better the performance of Shapley regression in the noncollinear setting. 

It is now also apparent why Shapley regression is preferable when multicollinearity 

exists among the variables. In this scenario, the beta estimates tend to be overblown, thus any 

measure depending on them, though are not exactly inaccurate, would be wild and the 

probability of getting an incorrect key driver high (almost 25 percent for the case of 

multicollinear, no omitted questions). Shapley solves this by foregoing use of the beta estimates 

themselves and using instead an alternative measure of the importance using the R2 fit. It must 

be noted that Shapley itself also uses OLS regression, which is why MLR begins to mirror its 

results when the beta estimates too begin to stabilize. 

This stability, however, will always remain incomplete, as has been discussed in related 

literature, due to the data being Likert-type (or ordinal in general). Variability is even greatly 

exaggerated by the discreteness of the data points, and the fact that the number of mass points 



19 

are too small, that a lot of variation is held within one step, instead of being distributed along 

an infinitely long continuous scale as is the ideal case when the regressors and the dependent 

variable are all normally distributed. 

 

 

From Case 2: Yi = 0.10 X1i + 0.25 X2i + 0.30 X3i + 0.35 X4i + εi 

 

Table 14: MLR Estimates behavior under multicollinearity and without omitted questions 

Variable Mean Std. Dev 

Lower 95% 

CL (Mean) 

Upper 95% CL 

(Mean) 

X1 0.0676911 0.1094237 0.0569351 0.0784470 

X2 0.0565236 0.1827198 0.0385629 0.0744843 

X3 0.3895534 0.1671959 0.3731186 0.4059881 

X4 0.2808217 0.1376425 0.2672919 0.2943514 

 

 

Table 15: MLR Estimates behavior under non-collinearity and without omitted questions 

Variable Mean Std. Dev 

Lower 95% 

CL (Mean) 

Upper 95% CL 

(Mean) 

X1 0.0910439 0.0658451 0.0845716 0.0975163 

X2 0.2020139 0.0824509 0.1939093 0.2101185 

X3 0.2632157 0.0761245 0.2557329 0.2706985 

X4 0.3001297 0.0795333 0.2923119 0.3079475 

 

Under the presence of multicollinearity, MLR estimates of importance have given more weight 

to question 3 at almost 0.40, followed by question 4 at 0.28. This explains why MLR kept on 

switching the identification of the key driver and main driver. Also, as seen in the confidence 

intervals, the regression coefficients provided by the MLR technique are also not anywhere 

near the true weights of the question.  

As for the scenario of non-collinearity, none of the true weights were still captured by 

the confidence intervals (despite X1 being very near). However, in this scenario, it can now be 

seen that the weights have been appropriately distributed among the four questions, with 

question 4 having the highest average importance followed by question 3. Despite the Non-

collinear, No Omitted scenario being the “no-problem” scenario, similar results can also be 

seen even in Non-collinear, Omitted scenario. This is because OLS beta-coefficients are only 

affected by omitted variable bias only when the omitted variable is correlated with the 

regressors (i.e. OLS beta-coefficients remain unbiased and consistent). In Shapley’s case, 

however, an omission of a relevant variable causes R2 (and therefore Shapley values) to 

destabilize. This might explain why MLR is consistently performing just as well or even better 

than Shapley under scenarios involving non-collinearity,  

 Similar in case 1 wherein the Importance vs. R2 graphs involving non-multicollinearity 

seem to start showing an increasing trend (though still considerably erratic), the same-scenario 

graphs under case 2 also exhibit the same pattern. This is because as mentioned earlier, the 

importance estimates under non-collinearity, despite being far from the true values, still 

possessed the correct order of weights (increasing trend). Their standard deviations are also 

low, implying accurate importance estimates. With this, MLR was able to correctly identify 

the main drivers even better than Shapley. 
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From Case 3: Yi = 0.20 X1i + 0.23 X2i + 0.27 X3i + 0.30 X4i + εi 

 

Table 16: MLR Estimates behavior under multicollinearity and without omitted questions 

Variable Mean Std. Dev 

Lower 95% 

CL (Mean) 

Upper 95% CL 

(Mean) 

X1 0.1507032 0.1135424 0.1395424 0.1618641 

X2 0.0426654 0.1817157 0.0248034 0.0605273 

X3 0.3648335 0.1669064 0.3484272 0.3812398 

X4 0.2387454 0.1357222 0.2254044 0.2520864 

 

 

Table 17: MLR Estimates behavior under non-collinearity and without omitted questions 

Variable Mean Std. Dev 

Lower 95% 

CL (Mean) 

Upper 95% CL 

(Mean) 

X1 0.1753622 0.0630472 0.1691649 0.1815595 

X2 0.1910458 0.0809131 0.1830924 0.1989993 

X3 0.2401289 0.0742449 0.2328309 0.2474269 

X4 0.2606342 0.0787232 0.2528960 0.2683724 

 

Similar in case 2, the magnitudes were switched for question 3 and question 4. This is evident 

in the results where MLR (now, including Shapley) switches the identification of the main 

drivers. Given that MLR performs bad under multicollinearity, it further worsens when drivers 

are almost as influential as each other. Not only that it switches the places of the key driver and 

second driver, it gives importance estimates that are arbitrarily far from the true weights. This 

is clear as their standard deviation is consistently high and the true weights lie far outside the 

confidence intervals. 

 While the regression coefficients lie still far away from the true weights under non-

collinear scenario, they now exhibit an increasing linear trend. The low standard deviations 

also suggest the accuracy of the estimates. This is why despite the bias being large, MLR was 

able to correctly identify the key driver and second driver even better than the Shapley driver. 

This further stresses out how MLR performs well under non-collinearity, regardless of 1) an 

omission of relevant variable and/or 2) indiscernibility of the main drivers. 

 

 

Conclusions 

It has been shown that Shapley performed better than MLR in scenarios considered in the 

present paper wherein the key driver is obvious based on the regression weights, but even then 

the advantage is too low to justify its complicated computation process. MLR, although it 

produced erratic and highly deviating values for the questions still performed almost as well as 

Shapley regression. However, this same result was not seen in cases wherein the main drivers 

are to some degree indiscernible, as the erratic behaviour of linear regression estimates (on 

which both MLR and Shapley are based) tend to overestimate some and underestimate others, 

to the point that it confuses between the key and second drivers. 
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Recommendations 

Future analysis of this same topic might include varying levels of multicollinearity for each 

case, to explore how the MLR estimates stabilize as the level of collinearity between each 

variable exists. At the same time, future studies might consider the incorporation of various 

other KDA analysis methodologies, such as Kruskall’s Driver Analysis and Random Forests. 

Using mixed continuous and categorical variables may also be explored. 

 Another possible setup that might be recalibrated from this simulation study is the 

algorithm used to simulate the data. The Mean Mapping Method by Kaiser et al uses the 

multivariate normal distribution as a starting point and then transforms the continuous scale 

into discrete ordinal using the marginal PMFs for the target variables and their corresponding 

“mappings” from the univariate standard normal distribution. In this respect, the resulting data 

follows to some degree the behavior of MVN-distributed random variables. 

Other simulation techniques that do not make use of MVN distribution might lead to 

different results. Another powerful simulation algorithm recommended in this regard is 

presented in Demirtas (2006), which uses a bivariate uniform normal distribution as starting 

point. Various other methods presented in Biswas (2004) may also be attempted, which use 

non-distributional algorithms. 
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Appendix A: Other summary tables and figures 

 

  
Figure A1: Importance vs fit performance plots for MLR (left) and Shapley (right) with multicollinear 

regressors and no question omitted under case 2 

 

 

  
Figure A2: Importance vs fit performance plots for MLR (left) and Shapley (right) with multicollinear 

regressors and one question omitted under case 2 

 

 

  
Figure A3: Importance vs fit performance plots for MLR (left) and Shapley (right) with non-collinear 

regressors and no question omitted under case 2 
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Figure A4: Importance vs fit performance plots for MLR (left) and Shapley (right) with non-collinear 

regressors and one question omitted under case 2 

 

  
Figure A5: Importance vs fit performance plots for MLR (left) and Shapley (right) with non-collinear 

regressors and one question omitted under case 3 

 

  
Figure A6: Importance vs fit performance plots for MLR (left) and Shapley (right) with non-collinear 

regressors and one question omitted under case 3 
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Figure A7: Importance vs fit performance plots for MLR (left) and Shapley (right) with non-collinear 

regressors and one question omitted under case 3 

 

  
Figure A8: Importance vs fit performance plots for MLR (left) and Shapley (right) with non-collinear 

regressors and one question omitted under case 3 

 

Table A1: Percentage of instances a question was identified as a main driver under case 2, 

collinear with one omitted questions under case 2 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.75% 1.75% 29.25% 19.00% 

2 7.75% 6.00% 63.00% 74.00% 

3 - - - - 

4 91.50% 92.25% 7.75% 7.00% 

 

Table A2: Percentage of instances a question was identified as a main driver under case 2, 

non-collinear with one omitted questions under case 2 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 0.00% 0.00% 25.75% 32.75% 

2 0.00% 0.00% 74.25% 67.25% 

3 - - - - 

4 100.00% 100.00% 0.00% 0.00% 
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Table A3: Percentage of instances a question was identified as a main driver under case 2, 

collinear with one omitted questions under case 3 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 12.25% 22.00% 37.25% 30.75% 

2 46.50% 40.00% 27.00% 34.25% 

3 - - - - 

4 41.25% 38.00% 35.75% 35.00% 

 

Table A4: Percentage of instances a question was identified as a main driver under case 2, 

non-collinear with one omitted questions under case 3 

 Key Driver Second Driver 

Question MLR Shapley MLR Shapley 

1 14.50% 24.75% 33.50% 40.50% 

2 22.00% 16.00% 39.50% 30.00% 

3 - - - - 

4 63.50% 59.25% 27.00% 29.50% 
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Appendix B: SAS codes used 

/********************************************************* 

CODES PREPARED BY 

BENABAYE, ISABELLA 

CABRAL, ANNE LOUISE 

DAYTA, DOMINIC 

DONATO, PATRICIA ROSE 

 

PRESENTED TO 

SIR MICHAEL VAN SUPRANES 

 

AS PARTIAL FULFILLMENT OF REQUIREMENTS IN 

STATISTICS 196.1, ADVANCED STATISTICAL COMPUTING 

 

Initial Caveats: Algorithm used for the simulation of 

ordinal-level variables from multivariate normal variates 

were derived from Wicklin (2013). 

**********************************************************/ 

 

 

/********************************************************* 

The following block of code concerns with the generation of 

p likert variables based on a defined PMF and correlation 

structure. 

**********************************************************/ 

%macro ordsimulate(seed,Corr); 

  

 *the functions OrdN, OrdVar, OrdCDF, Expand2Grid, 

 OrdFindRoot, OrdQuant, OrdMVCorr, and RandMVOrdinal 

 are functions defined in Wicklin(2013); 

 

 proc iml; 
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  /* OrdN: number of values for each variable */ 

  start OrdN(P); 

   return( countn(P, "col") ); 

  finish; 

 

  /* OrdMean: Expected value for each variable is Sigma_i (i*p[i])*/ 

  start OrdMean(P); 

   x = T(1:nrow(P)); /* values of ordinal vars */ 

   return( (x#P)[+,] ); /* expected values E(X) */ 

  finish; 

 

  /* OrdVar: variance for each variable */ 

  start OrdVar(P); 

   d = ncol(P); m = OrdMean(P); 

   x = T(1:nrow(P)); /* values of ordinal vars */ 

   var = j(1, d, 0); 

   do i = 1 to d; 

    var[i] = sum( (x - m[i])##2 # P[,i] ); /* defn of variance */ 

   end; 

   return( var ); 

  finish; 

 

  /* OrdCDF: Given PMF, compute CDF = cusum(PDF) */ 

  start OrdCDF(P); 

   cdf = j(nrow(P), ncol(P)); /* cumulative probabilities */ 

   do i = 1 to ncol(P); 

    cdf[,i] = cusum(P[,i]); 

   end; 

   return( choose(P=., ., cdf) ); /* missing vals for short cols */ 

  finish; 

 

  /* Function that returns ordered pairs on a uniform grid of points. 
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  Return value is an (Nx*Ny x 2) matrix */ 

  start Expand2DGrid( _x, _y ); 

   x = colvec(_x); y = colvec(_y); 

   Nx = nrow(x); Ny = nrow(y); 

   x = repeat(x, Ny); 

   y = shape( repeat(y, 1, Nx), 0, 1 ); 

   return ( x || y ); 

  finish; 

 

 

  /* OrdQuant: Compute normal quantiles for CDF(P) */ 

  start OrdQuant(P); 

   N = OrdN(P); 

   CDF = OrdCDF(P); 

 

   /* QUANTILE function in SAS/IML 12.1 does not accept 1 as 

parameter */ 

   /* Replace 1 with missing value to prevent error */ 

   CDF = choose(CDF > 1 - 2e-6, ., CDF); 

   quant = quantile( "Normal", cdf ); 

   do j = 1 to ncol(P); /* set upper quantile to .I = infinity */ 

   quant[N[j],j] = .I; /* .I has special meaning to BIN func */ 

   end; 

   return( quant ); 

  finish; 

  /* OrdFindRoot: Use bisection to find the MV normal correlation that 

  produces a specified MV ordinal correlation. */ 

  start OrdFindRoot(P1, P2, target); 

   N1 = countn(P1); N2 = countn(P2); 

   q1 = OrdQuant(P1); q2 = OrdQuant(P2); 

   v1 = q1[1:N1-1]; v2 = q2[1:N2-1]; 

   g = Expand2DGrid(v1, v2); 
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   /* find value of rho so that sum(probbnrm(g[,1], g[,2], rho))=target */ 

 

   /* Bisection: find root on bracketing interval [a,b] */ 

   a = -1; b = 1; /* look for correlation in [-1,1] */ 

   dx = 1e-8; dy = 1e-5; 

   do i = 1 to 100; /* iterate until convergence */ 

   c = (a+b)/2; 

   Fc = sum( probbnrm(g[,1], g[,2], c) ) - target; 

   if (abs(Fc) < dy) | (b-a)/2 < dx then 

   return(c); 

   Fa = sum( probbnrm(g[,1], g[,2], a) ) - target; 

   if Fa#Fc > 0 then a = c; 

   else b = c; 

   end; 

   return (.); /* no convergence */ 

  finish; 

 

  /* OrdMVCorr: Compute a MVN correlation matrix from the PMF and 

  the target correlation matrix for the ordinal variables. */ 

  start OrdMVCorr(P, Corr); 

   d = ncol(P); 

   N = OrdN(P); 

   mean = OrdMean(P); 

   var = OrdVar(P); 

   cdf = OrdCDF(P); 

   R = I(d); 

   do i = 1 to d-1; 

    sumCDFi = sum(cdf[1:N[i]-1, i]); 

    do j = i+1 to d; 

     sumCDFj = sum(cdf[1:N[j]-1, j]); 

     hStar = Corr[i,j] * sqrt(var[i]*var[j]) + mean[i]*mean[j] 

     - N[i]*N[j] + N[i]*sumCDFj + N[j]*sumCDFi; 
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     R[i,j] = OrdFindRoot(P[,i], P[,j], hStar); 

     R[j,i] = R[i,j]; 

    end; 

   end; 

   return(R); 

  finish; 

  /* RandMVOrdinal: 

  N Number of desired observations from MV ordinal distribution, 

  P Matrix of PMF for ordinal vars. The j_th col is the j_th PMF. 

  Use missing vals if some vars have fewer values than others. 

  Corr Desired correlation matrix for ordinal variables. Not every 

  matrix is a valid as the correlation of ordinal variables. */ 

  start RandMVOrdinal(N, P, Corr); 

   d = ncol(P); 

   C = OrdMVCorr(P, Corr); /* 1. compute correlation matrix, C */ 

   mu = j(1, d, 0); 

   X = RandNormal(N, mu, C); /* 2. simulate X ~ MVN(0,C) */ 

   N = OrdN(P); 

   quant = OrdQuant(P); /* compute normal quantiles for PMFs */ 

  do j = 1 to d; /* 3. convert to ordinal */ 

   X[,j] = bin(X[,j], .M // quant[1:N[j],j]); 

  end; 

  return(X); 

  finish; 

 

   /*input data*/ 

  P = {0.2 0.1 0.35 0.2, 

  0.2 0.2 0.35 0.3, 

  0.2 0.4 0.1 0.3, 

  0.2 0.2 0.1 0.1, 

  0.2 0.1 0.1 0.1}; 
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  Corr1={1 0.8 0.8 0.75, 

  0.8 1 0.9 0.8, 

  0.8 0.9 1 0.8, 

  0.75 0.8 0.8 1}; 

   

  Corr2={1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1}; 

 call randseed(&seed); 

 X = RandMVOrdinal(100, P, &Corr); 

 

 *print the data set; 

 create simulated from X[colname={"x1" "x2" "x3" "x4" "x5"}]; 

 append from X; 

 close simulated; 

quit; 

 

*create simulated data set with Y; 

 

 data YSimulated; 

  set simulated; 

  call streaminit(&g); 

  y = floor(0.05*X1 + 0.15*X2 + 0.2*X3 + 0.6*X4 + rand('normal')); 

  if y < 1 then y=1; 

  if y > 5 then y=5; 

 run; 

%mend; 

 

/********************************************************* 

The following block of code concerns with the evaluation 

of key drivers using the ML Regression method. The 

macro grabs a data set called YSimulated and solves for 

the beta coefficients and then gets their importance values, 

inputting the question with the maximum value 
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as the key driver into a row of the compiled table 

OUTTABLE 

*********************************************************/ 

 

%MACRO mlr(regressors,outtable); 

PROC REG DATA=YSimulated OUTEST=EST NOPRINT; 

 MODEL Y = &regressors / Rsquare; 

QUIT; 

 

PROC SQL NOPRINT; 

 Select _RSQ_ into :rsquare from Est; 

 

 Insert into Allests 

 Select &regs3 from Est;  

QUIT; 

 

 *transpose table of estimates then sort and name key and 2nd driver;                                                                                                                                     

        PROC TRANSPOSE DATA=Est OUT=Transpose;                                                                                 

                VAR &Regressors;                                                                                                         

        RUN; 

 

  PROC SORT DATA=Transpose; 

   BY DESCENDING COL1; 

  RUN; 

 

  DATA Transpose; 

   Set Transpose; 

    If _n_=1 then Kind="Key Driver"; 

    Else if _n_=2 then Kind="2nd Driver"; 

    Else Kind="Not Driver"; 

  RUN;  
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        PROC SQL; 

   INSERT INTO &OUTTABLE 

            SELECT "MLR" as Method, X LABEL="Question", Prop AS Driver,Kind,&Rsquare                                                                                                 

               FROM (SELECT _name_ AS X, ABS(col1)/SUM(ABS(col1)) AS Prop, Kind                                                       

                 FROM Transpose)                                                                                        

                 Where Kind="Key Driver" or Kind="2nd Driver"; 

        QUIT;                                                                                                                            

                                                                                                                                         

%MEND;     

 

/********************************************************* 

The following block of code concerns with the evaluation 

of key drivers using the Shapley Regression method. The 

macro grabs a data set called YSimulated and solves for 

the Shapley values and then gets their importance values, 

inputting the question with the maximum Shapley value 

as the key driver into a row of the compiled table 

OUTTABLE 

*********************************************************/ 

 

%MACRO shapley(regressors,outtable); 

 

PROC REG DATA=YSimulated OUTEST=EST NOPRINT; 

 MODEL Y = &regressors / SELECTION=Rsquare START=1 

STOP=%sysfunc(countw(&regressors)); 

QUIT; 

 

%let m=%SYSFUNC(countw(&regressors)); 

 

PROC SQL NOPRINT; 

 Select _RSQ_ into :rsquare from Est having _RSQ_=MAX(_RSQ_); 

QUIT; 
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 *load the regressors into macro variables; 

 %DO k = 1 %TO &m; 

  %LET x&k = %SCAN(&regressors,&k); 

 %END; 

  

 *the proc reg step done earlier does all possible regression; 

 *the step below takes the APR output and makes an additional 

 variable regs that prints which variables are used in each model 

 as a space-delimited list;  

 DATA Est; 

  Array x(&m) &regressors; 

  Array vreg(&m) $ vreg1-vreg&m; 

  SET Est; 

  %Do j=1 %to &m; 

   If x(&j) ne . then vreg(&j)="X&j"; 

   Else vreg(&j)=""; 

  %End; 

  regs=catx(" ", of vreg1-vreg&m); 

  KEEP regs _IN_  _RSQ_; 

 RUN; 

%DO k = 1 %TO %SYSFUNC(countw(&regressors)); 

 PROC SQL; 

  CREATE TABLE btable&k (c_IN_ NUM,cregs1 CHAR(30), cregs2 

CHAR(30), cRSQ NUM); 

 QUIT; 

%END; 

 

 %DO i = 1 %TO %SYSFUNC(countw(&regressors)); 

  PROC SQL; 

   INSERT INTO btable&i 

   SELECT _IN_,regs,"" AS regs2,_RSQ_ 
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   FROM EST 

   WHERE _IN_=1 AND REGS="X&i"; 

  QUIT; 

  %DO j = 2 %TO %SYSFUNC(countw(&regressors)); 

   PROC SQL; 

   INSERT INTO btable&i 

    SELECT a._IN_, regs1,regs2,_RSQ_-RSQ2 AS RSQ 

    FROM (SELECT _IN_,_RSQ_, regs AS regs1, monotonic() 

AS rows 

     FROM EST  

     WHERE REGS CONTAINS "X&i" AND _IN_=&j) 

AS a 

      FULL JOIN 

     (SELECT _IN_,_RSQ_ AS Rsq2, regs AS regs2, 

monotonic() AS rows 

     FROM EST 

     WHERE REGS NOT CONTAINS "X&i" AND 

_IN_=%EVAL(&j-1)) AS b 

      ON a.rows=b.rows; 

   QUIT; 

  %END; 

 %END; 

 

 

 PROC SQL; 

  CREATE TABLE compiledshapley(Question char(8),Shapley NUM); 

 QUIT; 

 

 

 %DO i = 1 %TO %SYSFUNC(countw(&regressors)); 

  PROC SQL; 

  INSERT INTO compiledshapley 

   SELECT "&&X&i" AS Q, avg(AveRSQ) AS SHAPLEY&i 
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   FROM 

    (SELECT c_IN_,avg(cRSQ) AS AveRSQ 

    FROM btable&i 

    GROUP BY c_IN_); 

  QUIT; 

 %END; 

  

 PROC SORT DATA=CompiledShapley; 

  By Descending Shapley; 

 RUN; 

 

 DATA CompiledShapley; 

  Set CompiledShapley; 

  If _n_=1 then Kind="Key Driver"; 

  Else if _n_=2 then Kind="2nd Driver"; 

  Else Kind="Not Driver"; 

 RUN; 

 

 PROC SQL; 

  Insert into &outtable 

  SELECT "Shapley", Question, Shapley AS Driver,Kind,&Rsquare 

  FROM compiledshapley 

  Where Kind="Key Driver" or Kind="2nd Driver"; 

 

  Drop table compiledshapley; 

  %do k=1 %to &m; 

   Drop table btable&k; 

  %end; 

 QUIT; 

%MEND; 

 

%macro corrdiff; 
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 PROC IML; 

 Corr1={1 0.8 0.8 0.75, 

  0.8 1 0.9 0.8, 

  0.8 0.9 1 0.8, 

  0.75 0.8 0.8 1}; 

 

 USE simulated; 

 READ ALL VAR {x1 x2 x3 x4} INTO sim; 

 CLOSE simulated; 

 

 difference=abs(corr1-corr(sim)); 

 corrline=repeat(0,1,16); 

 

 k=0; 

 DO i=1 to 4; 

  DO J=1 to 4; 

   k=k+1; 

   corrline[k]=difference[i,j]; 

  END; 

 END; 

  

 EDIT CORRDIFFERENCES; 

 APPEND from corrline; 

 CLOSE CORRDIFFERENCES; 

QUIT; 

%mend; 

 

 

/******************************************************** 

The following lines of code creates a compilation table 

for the Shapley and MLR values called Drivers, simulates 

200 data sets, each time doing MLR and Shapley on each, 
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and inputting the results into Drivers. 

********************************************************/ 

%macro complete(regressors,corr); 

 

/*for timing purposes*/ 

%let begin = %sysfunc(TIME()) ; 

 

%LET regs2=%sysfunc(tranwrd(&regressors,%str( ),%str( num,))); 

%LET regs3=%sysfunc(tranwrd(&regressors,%str( ),%str(,))); 

 

PROC SQL; 

 Create table allests (&regs2 num); 

 Create table DRIVERS (Method char(8), Question char(8), Driver num, Class 

char(10),Rsquare num); 

 Create table CORRDIFFERENCES (col1 num, col2 num, col3 num, col4 num, col5 

num, col6 num, col7 num, col8 num, col9 num, col10 num, col11 num, col12 num, col13 

num, col14 num, col15 num, col16 num); 

QUIT; 

 

%do g=1 %to 400; 

 %ordsimulate(&g,&corr); 

 %corrdiff; 

 %mlr(&regressors,drivers); 

 %shapley(&regressors,drivers); 

%end; 

 

 proc sort data=drivers; 

  by method class; 

 run; 

  

 title "Drivers Found By Shapley and MLR"; 

 proc freq data=drivers; 

  table question; 
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  by method class; 

 run; 

 

 title "Mean Absolute Error for Correlation between X1 X2"; 

 proc sql; 

  select avg(col2) from corrdifferences; 

 quit; 

 

 title "Importance Estimate Performance of the Key Drivers"; 

 proc means data=drivers; 

  var driver; 

  by method; 

  where question="x4"; 

 run; 

 

 title "Importance vs Fit Performance of X4"; 

 proc sgplot data=drivers; 

  scatter x=rsquare y=driver; 

  by method; 

  where question="x4"; 

 run; 

 

 title "Estimate Performances for MLR"; 

 proc means data=allests MEAN STDDEV MIN MAX CLM; 

  var &regressors; 

 run; 

 

 title; 

 *delete table; 

 proc sql; 

  drop table simulated, corrdifferences; 

 quit; 
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/*for timing purposes*/ 

%put Entire code was executed %sysfunc(putn(%sysevalf(%sysfunc(TIME())-

&begin.),mmss.)); 

%mend; 

 

*collinear, no omitted; 

%complete(x1 x2 x3 x4, Corr1); 

 

*collinear, omitted x3; 

%complete(x1 x2 x4, Corr1); 

 

*noncollinear, no omitted; 

%complete(x1 x2 x3 x4, Corr2); 

 

*noncollinear, omitted x3;                                                                                                                                                                                     

%complete(x1 x2 x4, Corr2); 


