
A Semiparametric Approach to Empirical Bayes
Estimation of Discrete False Discovery Rates Using

Kernels

D. B. Dayta1 S. M. Escalante2

1School of Statistics
University of the Philippines, Diliman

2Graduate Student
Aboitiz School of Innovation, Technology, & Entrepreneurship

Asia Institute of Management

IASC-ARS Interim Conference, December 2022

Dayta & Escalante (UPSS, AIM) Ordinal Empirical Bayes FDR IASC-ARS 2022 1 / 25



Agenda

1 Introduction

2 The Multiple Hypothesis Problem

3 Using Discrete Kernels

4 Simulation Results

5 Application to Hedenfalk [2001]

Dayta & Escalante (UPSS, AIM) Ordinal Empirical Bayes FDR IASC-ARS 2022 2 / 25



Introduction

Introduction

Contemporary statistical computing sees a fertile ground of problems in genomics, where
inference can be done simultaneously on thousands of genes.

Efron et al. [2001] took the idea of False Discovery Rates and approached it from a Bayesian
perspective. Also introduced the local false discovery rate (hereafter referred to as the
lowercase ‘fdr’), quantifying the probability that a given null hypothesis is true given the
observed value of its test statistic sense.

Robin et al. [2007] and Guedj et al. [2009], this mixture model comes center field in a novel
estimation procedure for the local false discovery rate involving kernel functions.
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

Consider testing m null hypotheses simultaneously. In the following table, m0 denotes the
number of true null hypotheses, of which V of them are falsely rejected.

Table: The multiple hypothesis testing problem

Decision
Do not reject H0 Reject H0 Total

Actual Setting
True H0 U V m0

False H0 T S m −m0

Total m − R R m
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

Benjamini and Hochberg [1995] defined FDR as

FDR = E

[
V

max(R, 1)

]
= E

[
V

R

]
for R ≥ 1 (1)
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

The FDR has also been investigated on a Bayesian perspective, as posterior probability
distribution holding certain assumptions on the said framework.

Consider the problem of testing m hypotheses. Let Hi be equal to 0 if the null hypothesis is
true, 1 if it is false.

Note that Hi ∼ Bernoulli(1− π0), where π0 is our prior knowledge of the proportion of the
null hypotheses being tested that are actually true (i.e. π0 = m0/m).

Then π0 also happens to be the probability a null hypothesis being true, which we write as
P(Hi = 0).

Dayta & Escalante (UPSS, AIM) Ordinal Empirical Bayes FDR IASC-ARS 2022 6 / 25



The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

Define π1 = 1− π0, the probability of null hypothesis being false, P(Hi = 1) = 1− P(Hi = 0).

Furthermore, for the m corresponding test statistics x1, x2, ., xm, let f0 be the density of xi , if
the null hypothesis is true; if it is false, let f1 be its density.

Then the distribution of X is given by

f (x) = π0f0(x) + π1f1(x) (2)
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

With the assumptions discussed above, Storey [2003] presented the form of Bayesian FDR
(FDR) as follows:

FDR(R) = P(H = 0|x ∈ R) (3)

where R is the set of ”rejected” null hypotheses.

FDR(R) represents the resulting false discovery rate of choosing to declare the tests in R as
significant.
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

Now let F0 be the cumulative distribution function (CDF) corresponding to f0 , and F be the
CDF corresponding to f .

Storey [2003] showed that by applying Bayes’ rule, the FDR takes the form

FDR(R) =
π0F0(R)

F (R)
(4)
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

Efron [2005] further explored this Bayesian interpretation of the FDR. While FDR comprises
the whole set of hypotheses, Efron introduced the local fdr, which is the probability that a
hypothesis is true given the data, which is given by

fdr(x) =
π0f0(x)

f (x)
(5)
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The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

Methods for estimating these figures have already been explored for the continuous case.
Efron and Tibshirani [2002] let f0 be known and assumed to follow the standard normal
N(0, 1) distribution. The CDF F (R) is then estimated by

F̂ (R) =
#{zi ∈ R}

m
(6)

Dayta & Escalante (UPSS, AIM) Ordinal Empirical Bayes FDR IASC-ARS 2022 11 / 25



The Multiple Hypothesis Problem

The Multiple Hypothesis Problem

As for the local fdr, a close analog is the following estimator:

f̂dr(x) =
π0f0(x)

f̂ (x)
(7)
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Using Discrete Kernels

Using Discrete Kernels

Kernel Density Estimation is a nonparametric approach, which attempts to improve upon
standard histogram methods by reweighting the data with the use of “kernel functions.” A
rough analog of the histogram method may be presented as follows:

f̂ (x) =
1

n

∑
j

I (xj = x) (8)

Dayta & Escalante (UPSS, AIM) Ordinal Empirical Bayes FDR IASC-ARS 2022 13 / 25



Using Discrete Kernels

Using Discrete Kernels

The kernel function will have to be replaced with one that is more suited for a discrete support.
We refer to two such kernels, the first being the Dirac kernel mentioned in Li and Racine[2007]:

kj(x ; h) =

{
1− h x = xj
h

c−1 x 6= xj
(9)

as well as the Aitken kernel defined in Li et al [2008]:

kj(x ; h) =

{
1 x = xj

h x 6= xj
(10)
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Using Discrete Kernels

Using Discrete Kernels

Algorithm 1 Estimating the Empirical Bayes FDR

Initialize: τ̂j = 1− π0
while err ≤ ε do

f̂1(x)←
∑

j τjK (xj ; h)/
∑

i τi

f̂ (x)← π0f0(x) + (1− π0)f̂1(x)
τ̂j ← 1− π0f0(x)/f̂ (x)

err ← maxj
|τ (l)j −τ

(l−1)
j |

τ
(l−1)
j

end while
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Using Discrete Kernels

Using Discrete Kernels

Algorithm 2 Cross-validation on the Kernel Smoothing Parameter

Initialize: randomly divide set of values x into V non-overlapping folds: Y1,Y2, ...,YV .
Define Xk as the collection of all Yi 6=k , that is the data-set taking out the kth fold.
for fold i ∈ {1, 2, ...,V } do

Fit f̂1 on Xi (the training set) using Algorithm 1 with given h
Using the fitted f̂1, estimate f̂1(y) for every y from Yi (the testing set)
Define the log-likelihood of the subset yi as L(yi ; h) =

∑
j ln f̂1(yj)

Then the V-fold cross-validation log-likelihood is defined as LCV (h) = 1
V

∑
j L(yj ; h)

end for
We choose h = arg maxh LCV (h)
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Simulation Results

Using Discrete Kernels

Figure: Simulated power, assuming true π0 = 0.95, in the mixed case
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Simulation Results

Using Discrete Kernels

Figure: Simulated power, assuming true π0 = 0.95, in the overlapping case

Dayta & Escalante (UPSS, AIM) Ordinal Empirical Bayes FDR IASC-ARS 2022 18 / 25



Simulation Results

Using Discrete Kernels

Figure: Simulated FDP, assuming true π0 = 0.95, in the mixed case
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Simulation Results

Using Discrete Kernels

Figure: Simulated FDP, assuming true π0 = 0.95, in the overlapping case
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Application to Hedenfalk [2001]

Application to Hedenfalk [2001]

We apply the proposed procedure on data reported by Hedenfalk et al. [2001], concerning
patients diagnosed with two different kinds of breast cancer.

The data used in the present paper concerns seven BRCA1 and eight BRCA2 patients
(corresponding to gene mutations characterizing the disease), whose expression ratios were
measured across m = 3226 genes.
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Application to Hedenfalk [2001]

Application to Hedenfalk [2001]

Figure: Kernel-Estimated Densities, null (dashed) versus mixture (solid)
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Application to Hedenfalk [2001]

Application to Hedenfalk [2001]

A total of 51 genes were found to be significant at FDRi < 0.10 if estimation using the Dirac
kernel is applied.

We observe that Efron’s procedure tends to overestimate not only the proportion of true nulls
but also the corresponding local false discovery rates.

Cutoff, q
Genes with fdr <q
Dirac Efron

0.050 0.00 0.00
0.075 26.00 0.00
0.100 51.00 0.00
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Application to Hedenfalk [2001]

Application to Hedenfalk [2001]

Figure: Estimated Bayesian FDR (ordered) for Dirac (solid) versus Efron (dashed)
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Application to Hedenfalk [2001]
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