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INTRODUCTION

INTRODUCTION

Contemporary statistical computing sees a fertile ground of problems in genomics, where
inference can be done simultaneously on thousands of genes.

Efron et al. [2001] took the idea of False Discovery Rates and approached it from a Bayesian
perspective. Also introduced the local false discovery rate (hereafter referred to as the
lowercase ‘fdr’), quantifying the probability that a given null hypothesis is true given the
observed value of its test statistic sense.

Robin et al. [2007] and Guedj et al. [2009], this mixture model comes center field in a novel
estimation procedure for the local false discovery rate involving kernel functions.

DAYTA & ESCALANTE (UPSS, / ORDINAL EMPIRICAL BAYES FDR TASC-ARS 2022 3/25



THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

Consider testing m null hypotheses simultaneously. In the following table, mg denotes the
number of true null hypotheses, of which V' of them are falsely rejected.

TABLE: The multiple hypothesis testing problem

Decision
Do not reject Hy Reject Hy, Total
True H() U Vv mo
Actual Setting False Hy T S m— mg
Total m—-R R m
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THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

Benjamini and Hochberg [1995] defined FDR as

vV %
FDR=E|—F | =E|—=| forR>1
[max(R, 1)] [R] orn =

DayTA & EscALANTE (UPSS, AIM) ORDINAL EMPIRICAL BAYES FDR

TASC-ARS 2022

5/25



THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

The FDR has also been investigated on a Bayesian perspective, as posterior probability
distribution holding certain assumptions on the said framework.

Consider the problem of testing m hypotheses. Let H; be equal to 0 if the null hypothesis is
true, 1 if it is false.

Note that H; ~ Bernoulli(1 — my), where g is our prior knowledge of the proportion of the
null hypotheses being tested that are actually true (i.e. mp = mg/m).

Then 7 also happens to be the probability a null hypothesis being true, which we write as
P(H; = 0).
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THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

Define m; = 1 — mg, the probability of null hypothesis being false, P(H; = 1) =1 — P(H; = 0).

Furthermore, for the m corresponding test statistics x1, X2, ., Xm, let fy be the density of x;, if
the null hypothesis is true; if it is false, let fi be its density.

Then the distribution of X is given by

f(x) = mofo(x) + m1fi(x) (2)
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THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

With the assumptions discussed above, Storey [2003] presented the form of Bayesian FDR
(FDR) as follows:

FDR(R) = P(H = 0|x € R) (3)

where R is the set of "rejected” null hypotheses.

FDR(R) represents the resulting false discovery rate of choosing to declare the tests in R as
significant.
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THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

Now let Fy be the cumulative distribution function (CDF) corresponding to fy , and F be the
CDF corresponding to f.

Storey [2003] showed that by applying Bayes' rule, the FDR takes the form

FDR(R) = W (4)
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THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

Efron [2005] further explored this Bayesian interpretation of the FDR. While FDR comprises
the whole set of hypotheses, Efron introduced the local fdr, which is the probability that a
hypothesis is true given the data, which is given by

fr(x) = T20() (5)

f(x)
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THE MULTIPLE HYPOTHESIS PROBLEM

THE MUuLTIPLE HYPOTHESIS PROBLEM

Methods for estimating these figures have already been explored for the continuous case.
Efron and Tibshirani [2002] let fO be known and assumed to follow the standard normal
N(0,1) distribution. The CDF F(R) is then estimated by

F(r)= T2 RS
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THE MULTIPLE HYPOTHESIS P

THE MUuLTIPLE HYPOTHESIS PROBLEM

As for the local fdr, a close analog is the following estimator:

Al = "0 ™
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USING DISCRETE KERNELS

USING DISCRETE KERNELS

Kernel Density Estimation is a nonparametric approach, which attempts to improve upon
standard histogram methods by reweighting the data with the use of “kernel functions.” A
rough analog of the histogram method may be presented as follows:

=3 105 =) ®)
J
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USING DISCRETE KERNELS

USING DISCRETE KERNELS

The kernel function will have to be replaced with one that is more suited for a discrete support.
We refer to two such kernels, the first being the Dirac kernel mentioned in Li and Racine[2007]:

1-h x=x;
ki(x; h) = J 9
J(X ) {Cﬁl X#Xj ()

as well as the Aitken kernel defined in Li et al [2008]:

k(i h) = {}, oy (10)
J
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USING DISCRETE KERNELS

USING DISCRETE KERNELS

Algorithm 1 Estimating the Empirical Bayes FDR

Initialize: 7, =1—mg
whil/t\a err < e do
Alx) < 2 mKOg h)/ 2 mi
f(X) — Wofb(X) + (1 — Tro)fl(X)
7i = 1 — mofo(x)/f(x)
|60_AF”|

. J
err < max; ——y

end while
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USING DISCRETE KERNELS

USING DISCRETE KERNELS

Algorithm 2 Cross-validation on the Kernel Smoothing Parameter

Initialize: randomly divide set of values x into V' non-overlapping folds: Y1, Ys,..., Yy.
Define X as the collection of all Yj., that is the data-set taking out the kth fold.
for fold i € {1,2,..., V} do

Fit A on X; (the ‘training set) using Algorithm 1 with given h

Using the fitted £, estimate f1(y) for every y from Y; (the testing set)

Define the log-likelihood of the subset y; as L(y;;h) =3 _;In A(y))

Then the V-fold cross-validation log-likelihood is defined as Ley(h) = ¥ > Lyji h)
end for
We choose h = arg maxy, Lcy(h)
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USING DISCRETE KERNELS
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FIGURE: Simulated power, assuming true mg = 0.95, in the mixed case
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USING DISCRETE KERNELS
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APPLICATION TO HEDENFALK [2001]

APPLICATION TO HEDENFALK [2001]

We apply the proposed procedure on data reported by Hedenfalk et al. [2001], concerning
patients diagnosed with two different kinds of breast cancer.

The data used in the present paper concerns seven BRCAL and eight BRCA2 patients

(corresponding to gene mutations characterizing the disease), whose expression ratios were
measured across m = 3226 genes.
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APPLICATION TO HEDENFALK [2001]

APPLICATION TO HEDENFALK [2001]

A total of 51 genes were found to be significant at FDR; < 0.10 if estimation using the Dirac

kernel is applied.

We observe that Efron’s procedure tends to overestimate not only the proportion of true nulls

but also the corresponding local false discovery rates.

Cutoff, g Genes with fdr <q

Dirac  Efron

0.050 0.00 0.00
0.075 26.00 0.00
0.100 51.00 0.00

DayTA & EscALANTE (UPSS, AIM) ORDINAL EMPIRICAL BAYES FDR

TASC-ARS 2022

23 /25



APPLICATION TO HEDENFALK [2001]

APPLICATION TO HEDENFALK [2001]

DAYTA & ESCALANTE (U

FDR

ORDINAL EMPIRICAL BAYES FDR

TASC-ARS 2022

24 /25



APPLICATION TO HEDENFALK [2001]

SELECTED REFERENCES

© Efron, B (2004). "Large-scale simultaneous hypothesis testing: the choice of a null hypothesis.”
Journal of the American Statistical Association. 2004, 99:96-104.

@ Chen, Xiongzhi and Doerge, R.W. (2015). " A weighted FDR procedure under discrete and
heterogeneous null distributions.” [URL](https://arxiv.org/abs/1502.00973)

@ Guedj, Mickael; Robin, Stephane; Celisse, Alain; and Nuel, Gregory (2009). "Kerfdr: a
semi-parametric kernel-based approach to local false discovery rate estimation.” BMC
Bioinformatics 2009, 10:84. DOI:10.1186/1471-2105-10-84

@ Li, Q.; and Racine, J. (2007). "Nonparametric econometrics: Theory and practice.” Princeton
University Press.

@ Benjamini, Y; and Hochberg, Y (1995): " Controlling the false discovery rate: a practical and
powerfull approach to multiple testing.” JRSSB 1995, 57:289-300.

@ Hedenfalk, I; Duggan, D; Chen, YD; Radmacher, M; Bittner, M; Simon, R; Meltzer, P; Gusterson,
B; Esteller, M; Kallioniemi, OP; Wilfond, B; Borg, A; and Trent, J (2001). " Gene expression
profiles in hereditary breast cancer.” New England Journal of Medicine, 344:539-548.

DayTA & EscALANTE (UPSS, AIM) ORDINAL EMPIRICAL BAYES FDR TASC-ARS 2022 25 /25



	Introduction
	The Multiple Hypothesis Problem
	Using Discrete Kernels
	Simulation Results
	Application to Hedenfalk [2001]

